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LElTER TO THE EDITOR 

Backlund transformations and explicit solutions of certain 
inhomogeneous nonlinear Schrodinger-type equations 

K Porsezian 
Centre for Nonlinear Dynamics, Department of Physics, Bharathidasan University, 
Tiruchirapalli 620 024, India 

Received 28 November 1990 

Abstract. We show that the Darbaux-Bargmann method can be used to derive Backlund 
transformations and construct explicit soliton solutions for certain inhomogeneous non- 
linear SchrBdinger-type equations. 

Nonlinear partial differential equations integrable by the inverse spectral transform 
(IST) method form a wide class of soliton equations which possess many remarkable 
properties [l-31. These soliton solutions can be obtained in different ways. 

Among them, the Backlund transformation (ET) technique is one of the direct 
methods to obtain the soliton solutions of a given NLEE [4-61 and has the additional 
merit of providing the wavefunctions associated with the linear eigenvalue problem. 
Using the Darboux-Bargmann method, such an approach has been successfully applied 
to certain NLEE [7,8]. The main aim of this letter is to show that the above method 
can also be used to derive the BT and soliton solutions for a class of inhomogeneous 
nonlinear Schrodinger (NLS) type equations. 

Consider the ZSIAKNS eigenvalue problem defined in the form 

where A is an eigenvalue parameter which is non-isospectral depending on the 
inhomogeneities involved in the system. The corresponding time evolution equation 
is given by 

(VI) = ( A  B ) ( V I )  
V2 , C - A  V2 

where A, B and C are functions of A, q and r. From the compatibility condition 
V,, = V,,, we obtain various nonlinear evolution equations of physical interest depend. 
ing on the choices of A, E, C and r. For nonlinear Schrodinger (NLS) type equations 
r = -q*. 

To construct the BT of (1) and (2) with r = -q*. we define a new set of linear 
evolution equations for Vi, similar to (1) and (2) with all quantities replaced by the 
primed ones except the eigenvalue A which remains the same 
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and 

( V i )  - ( A '  - " ' ) ( V i )  
V; , C' -A' Vi  (4) 

where A ,  B' and C' are functions of A, q' and q'*. 
Now, the quantities referring to the n-soliton problem are defined by 

vi= V,(n) v;= V2(n) 4'- 4. q'* s? q; V , = (  ;). ( 5 )  

Similarly, those corresponding to the ( n  - 1) soliton problem are given by 

V , = V , ( n - l )  v2- V,(n- l )  q-  q(n - 1) 

q*= q*(n - 1 )  V = (  ;) 
We turn to Darboux's method [9] to expand the n-soliton wavefunction V' in terms 
of ( n  - 1)-soliton solutions V 

where a, b, c and d are functions of (4, q * )  and (q', q'*) and through them functions 
of x and f. Substituting (7) in (1)-(4) and equating the coefficients of V,,* on both 
sides we obtain the following differential equations: 

a, = q*b+ q'c 

b, =-2iAb-qa+q'd 

cx=2iAc-q'*A+q*d 

d,=-q'*b-qC. 

We now invoke an idea due t o  Bargmann [lo] who showed that for the Schrodinger 
equation -(d2+/dxz) + V(x)+ = kz+, and for a potential capable of giving n bound 
states, the wavefunction can be written in the form e"f(k, x ) ,  wherefis an nth-degree 
polynomial in k. It is well known that the Schrodinger equation is the associated 
eigenvalue equation for the application of the inverse scattering transform method to 
the Kdv equation [ll]. These considerations have been extended to the entire AKNS 

problem [12]. On the other hand, we know that the n-soliton solution of the NLEE, 

envisaged by the ZS/AKNS equation can be looked upon as a potential giving n bound 
states. Thus the idea due to Bargmann suggests that V and V' will differ by a linear 
function of A since they satisfy the eigenvalue equation involving the first power of A. 
Thus we write 

a =ao+ Aa, b=b,+Ab, c=c,+Ac, d=do+Ad,  (9) 

where a, b, c, d are functions of x and f through (9, q*) and (q', q'*). Now using (9) 
in ( 8 )  and equating the coefficients of equal powers of A on both sides, we get a set 
of algebraic and differential equations for a, .  . . , d. Solving the resultant equations, 
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we obtain 

ao= ia *&'4p2-~qr+q12 

bo = 2i [ ( j )  p q ' -  q ]  co = $ [ q'* - (f) q * ]  

where p, 8, a, p are the integration constants which may depend on time. In addition, 
with the proper choices of integration constants, the following equation must he satisfied 

q:+ qx = -2ia(q'+ q ) + (  4'- q)[4p2 -I¶'+ q12]"2. (11) 

Equation (1 1) gives the space BT for the NLS type equations obtained from the ZS/AKNS 

eigenvalue problem defined in (1) and (2) with r=-q*. Similarly, from the time 
evolution part of the eigenvalue problem, we obtain the following evolution equations 
connecting n and ( n  - 1) soliton solutions: 

a, = a(A'-  A)  + cB'- bC 0 2 a )  

b: = b(A' + A) - aB + dB' (1Zb) 

c, = - c ( A ' + A ) - o C ' - d C  

d, = -d (  A' - A )  + bC' - cB. 

From (lo), we see that (12b, c )  would give the time part of the BTS. Below, we discuss, 
the BTS and the construction of soliton solutions for certain inhomogeneous nonlinear 
Schrodinger-type equations. 

The generalized Hirota equation with linearly x-dependent inhomogeneities is 
given by [13] 

The compatibility condition ( Vx), = ( V,Ix leads to (13) only when A satisfies the equation 

Ax =2p2A2-pIA with A=cr,(t)+iP,(f) (15) 

so that the flow is non-isospectral. 
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Now, we will derive the soliton solutions and wavefunctions for the generalized 
NLSE. By introducing the transformation 

equations (I)  and (2) reduce to the Riccati equations 

r, = -2ihr + q*r2 - q 

T , = B + 2 A T - C T 2  

with r'satisfying similar form of equations. Choosing r'= l/r*, we obtain the following 
relation between n and ( n  -1) solitons r41 

From (18) one can derive with a recursive method the complete soliton solutions of 
the generalized NLS equation and the corresponding ZS/AKNS wavefunctions. To get 
the soliton solution of a given nonlinear equation, we start with the zero soliton solution 
q(0) = 0 of the generalized NLS equation and using this in ( I ) ,  the zero soliton ZS/AKNS 

wavefunction V(0) is obtained. The time dependence of V(0)  is derived from (2) with 
the proper choices of A, B and C. We use these known ~ ( 0 )  and V ( 0 )  in (18) to obtain 
the one soliton solution of the given equation. The procedure can then be continued 
to obtain multi-soliton solutions and the accompanying wavefunctions. For instance, 
the one-soliton solution of (13) is found to be 

q = -20, sech 6, 

5, =2Plx -2  j [nPI-4~2alPI+4~P:-12ya:P11 dt' 

(19) 

where 

x 1 = 2 a , x + 2  [ Y , O I , - Y ~ ( ~ : - P : ) - ~ ~ ( ~ : - ~ ~ , P : ) I  dt'. 

We consider the evo!u!ion equation in the form [!4,15! (by putting N = 2 in 
equation (17) of [14]): 

iq,+ q , , + 2 1 q I 2 q + ~ - ; i + 4 q  7 dr'= 0. 
q' 1'"' 

The linear eigenvalue problem associated with (20) is given by 

and 
.- \ j y d r ' + w )  2 Arq+i(q,+q/r) 

-hrq*+i(qr+q*/r) --2i( ih2r2 1 !$cl#+- 
2 
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and A, =2A2, so that the compatibility condition leads to (20) .  Then the relation between 
the n and ( n  - 1 )  soliton solutions reads 

with 

Now, the spatial ET associated with (20)  can be constructed as 

and the time derivative of (22)  with (21)  gives the time BT. From (22) the one-soliton 
solution for (20) is found to  be 

d l )  = -2P,r sech( $+A,) exp [ -i($+A2)] 

with 

Here also we find that soliton spreads as a function of time (figure I ) ,  i.e. the soliton 
represents a ring wave whose radius and thickness increases linearly with time (for 
large t ) ,  while the amplitude decreases like 1-' for fixed r. 

It is interesting to note that under the transformations x = r2 /4 ,  9 = 2if/r, we observe 
that for the parametric choice p2 = 1, y2 = y, = p I  = 0, systems (13) and (20) are the 
same. 

I 
0 10 

,-.I 

Figure 1. 
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In dimensionless form the NLS equation in a weakly inhomogeneous medium can 

i9,+qxx+2(lq12-~x)q = o .  (26) 

be written as [ 161 

The associated eigenvalue problems read 

][ :] (276) [:I,= [ [ i (9 :+2 ip t9* ) -2hq*) -2hq*]e -*  -ilqI2+2iA2+4ipAt 

where A = 2ipxf+$p2f3. Following the same method discussed earlier and introducing 
a function r =  Vl/V2, and choosing r‘= l / r* ,  the relation between n and ( n - 1 )  
soliton solutions is found to be 

ilqI2 - 2ih2 -4ipAf [i(qX-2iptq)+2Aq] e” 

- 4 6 , ~  e-* 
9’+ 9 = 

(i+iri2) ’ 

Then, the BTS associated with (26) can be written as 

qx+ ~ : = { ( 9  - 9’)[46?- I9’+ 91211’2-2ia,(q+ 9, ) )  e-A -2ipt(q‘+ q )  e“. (29) 

Similarly, by taking the time derivative of (28) and substituting (276) one can easily 
obtain the time BT. From (28), the one-soliton solution for (26) is obtained in the form 

q(l)  = -26, sech{2p,x + /.?,A, +8a1Pl t + 2pp,t2]} 

x e x p { - 2 i [ a l x + 2 ( a ~ - p ~ ) f + 2 p n , f 2 + p x f  ++p2f’+a,A,]} (30) 

which is in agreement with the solution given by Chen and Lin [16]. 
Thus, we conclude that the Darboux-Bargmann method can also he successfully 

used to study the inhomogeneous equations and we established this by working out 
the BTS, soliton solutions and wavefunctions for the generalized Hirota and circularly 
symmetric NLS equations. 
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