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Backlund transformations and explicit solutions of certain
inhomogeneous nonlinear Schrodinger-type equations
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Tiruchirapalli 620 024, India
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Abstract. We show that the Darboux-Bargmann method can be used to derive Bicklund
transformations and construct explicit soliton solutions for certain inhomogeneous non-
linear Schrédinger-type equations.

Nonlinear partial differential equations integrable by the inverse spectral transform
(1sT) method form a wide class of soliton equations which possess many remarkable
properties [1-3]. These soliton solutions can be obtained in different ways.

Among them, the Backlund transformation {BT) technique is one of the direct
methods to obtain the soliton solutions of a given NLEE [4-6] and has the additional
merit of providing the wavefunctions associated with the linear eigenvalue problem.
Using the Darboux-Bargmann methed, such an approach has been successfully applied
to certain NLEE [7,8]. The main aim of this letter is to show that the above method
can also be used to derive the BT and soliton solutions for a class of inhomogeneous
nonlinear Schrédinger (NLs) type equations.

Consider the zs;akNs eigenvalue problem defined in the form

(.- DG 8

where A is an eigenvalue parameter which is non-isospectral depending on the
inhomogeneities involved in the system. The corresponding time evolution equation

is given by
vy (A B 1A
(V;),—(C ‘A)(Vz) (2)

where A, B and C are functions of A, ¢ and r. From the compatibility condition
V.. = V.., we obtain various nonlinear evolution equations of physical interest depend-
ing on the choices of A, B, C and r. For nonlinear Schrodinger (NLS) type equations
r=—g*

To construct the BT of {1) and (2) with r=—g*, we define a new set of linear
evolution equations for V1, similar to (1) and (2) with all quantities replaced by the
primed ones except the eigenvalue A which remains the same
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(¥)= (2 -Bf;') ( \‘;) 4)

where A', B' and C’ are functions of A, ¢’ and g™*.
Now, the quantities referring to the n-soliton problem are defined by

and

! ! L ¥ V'
1= Vi(n) Vi= Vi(n) q =4qn q'*=g¥ V'E(V:). (5)
2

Similarly, those corresponding to the (n—1) soliton problem are given by

Vi=Vi(n-1) Vo= Vo(n—1) g=g{n—1)
= _ _(" (6)
g*=q*(n-1) V—(Vz).

We turn to Darboux’s method [9} to expand the n-soliton wavefunction V' in terms
of (n—1}-soliton solutions V:

Vi a b\/V,
vy \c d ™
2 < V,
where a, b, ¢ and d are functions of (g, ¢*) and (q’, ¢"*) and through them functions

of x and t. Substituting (7) in (1)-(4) and equating the coefficients of V,, on both
sides we obtain the following differential equations:

a,=qg*b+g'c

b, =—-2iAb—ga+qg'd
(8)
o, =2iAc— g A+ g¥d

d.=—q™b—qc

We now invoke an idea due to Bargmann [10] who showed that for the Schrodinger
equation —(d*y/dx?)+ V(x)¢ = k*y, and for a potential capable of giving n bound
states, the wavefunction can be written in the form e**f (k, x), where f is an nth-degree
polynomial in k. It is well known that the Schrodinger equation is the associated
eigenvalue equation for the application of the inverse scattering transform method to
the kdv equation [11]. These considerations have been extended to the entire AKNS
problem [12]. On the other hand, we know that the n-soliton solution of the NLEE,
envisaged by the zs/AKNs equation can be looked upon as a potential giving n bound
states. Thus the idea due to Bargmann suggests that V and V' will differ by a linear
function of A since they satisfy the eigenvalue equation involving the first power of A.
Thus we write

a=a,+Aa, b=>b,+aAb, c=cot Al d=d,+rd, (9)

where a, b, ¢, d are functions of x and ¢ through (g, g*) and (g’, ¢"*). Now using (9)
in (8) and equating the coefficients of equal powers of A on both sides, we get a set
of algebraic and differential equations for 4,..., d. Solving the resultant equations,
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we obtain
a, = u(t) bi=¢,=0 d,=4(t)
F)
ay=ia /4> ~|g'+q|° do= —(—) a0+ B(1) (10)
1)

HQ-] oot

where pu, 8, o, 8 are the integration constants which may depend on time. In addition,
with the proper choices of integration constants, the following equation must be satisfied

q.+g.=—2ia(q’ +q)+(g' — q)[4B8% —|q'+ qI’1>. (11)

Equation (11) gives the space BT for the NLs type equations obtained from the zs/AK NS
eigenvalue problem defined in (1) and (2) with r=—g¥. Similarly, from the time
evolution part of the eigenvalue problem, we obtain the following evolution equations
connecting n and (n—1) soliton solutions:

a=a(A’'—A}+cB' - bC (12a}
b.=b(A'+A)—aB+dB (12b)
¢ =—c(A'+A)—aC'—dC (12¢)
d,=—d(A'— A)+bC'—cB. (12d)

From (10), we see that (125, ¢) would give the time part of the BTs. Below, we discuss,
the BTs and the construction of soliton solutions for certain inhomogeneous nonlinear
Schriodinger-type equations.

The generalized Hirota equation with linearly x-dependent inhomogeneities is
given by [13]

ig, +ip g +ily,+ 1. %) g+ (¥2+ p2x) (g +2lg’g)

—~~
—
LS )

S

+2.. (n +
\
where the values of A, B and C in the eigenvalue equation (2) take the form

A=ip, J gl dx'+i{ yo+ pox)lgl* + ¥(gg¥ — g*q.) —diya®

—2i(yat pax) A3+ (9 + X)) A+ 2iyA| g

B=i(y2+ %) g — ¥que — (71 F 1X)q +in2g ~2v|gl’ g+ 4yA%q (14)
+2iyAg, +2{ v+ uax)Aq

C=-B*

'I;he compatibility condition ( V,.), = (V,) . leadsto (13) only when A satisfies the equation
A =20 = pa A with A = a, () +iB, (1) (15)

50 that the flow is non-isospectral.
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Now, we will derive the soliton solutions and wavefunctions for the generalized
NLSE. By iniroducing the transformation

F="“:T; =0~'1+iﬁ1 B.>0
equations (1) and (2) reduce to the Riccati equations
. P, =-2iAT+¢*T?—¢q (16)
I =B+2AT-CTI? (17)

with I" satisfying similar form of equations. Choosing I'" = 1/T"™*, we obtain the following
relation between n and {n—1) solitons [4]

. 4p,r ro _2B1+Y48i-|q'+qf’

+g=— =
T4 "G (¢*+q*%)

From (18) one can derive with a recursive method the complete soliton solutions of
the generalized NLs equation and the corresponding zssaknNs wavefunctions. To get
the soliton solution of a given nonlinear equation, we start with the zero soliton solution
q(0) =0 of the generalized NLs equation and using this in (1), the zero soliton zs/AK NS
wavefunction V(0) is obtained. The time dependence of V{0) is derived from (2) with
the proper choices of A, B and C. We use these known ¢{0) and V{0}in (18) to obtain
the one soliton solution of the given equation. The procedure can then be continued
to obtain multi-soliton solutions and the accompanying wavefunctions. For instance,
the one-soliton solution of (13} is found to be

g=—28, sech & e~ (19)

(18)

where

£ =2B8x-2 J [yiB1—4y.08,+ 4')’3%‘ 12')"1?.31] dr’

X1 =2x+2 J [yier— volai - B]) - dy(ai—3a,8])] dr.

We consider the evolution equation in the

equation (17) of [14]): )

2
iqf+q”+2|q|2q+%'—r%+4q J %dr'=0- - (20)
The linear eigenvalue problem associated with (20} is given by
’_i;r q\ )
()= 2w a1a
Va/ . _ % Ar v,
T 3
and
i el el \
——1——L+2i(J lil,-dr'+lqé| ) Arg+i(g,+q/r)
r

-1
Va/, i)\zrz__Zi(—[E]ﬁ

—Arg*+i(gF+q%/r)
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and A, =22 so that the compatibility condition leads to (20). Then the relation between
the n and (n — 1) soliton solutions reads

48T '
pgem m—— 2
T4 (+|TPH (22)
with
» Y [RLB FE A
F__zﬁ,.+v/43f,2 lg'+ g 23)
N (g*+q%) '

Now, the spatial BT associated with (20) can be constructed as

+q' ]
g.tq.= (i-;q*) +3g' - )[4Bir — g’ + g[*1"*~ia,y(g'+ q) (24)

and the time derivative of (22) with {21) gives the time BT. From (22) the one-soliton
solution for (20) is found to be

2 2
g(1)=-28,r sech(ﬁ—l;—ﬂﬁ,) exp[—i(%+A2)] (25)
with
B a,(0)+2¢ 8, = Ba(0)
7 (a(0)+ 207+ B3(0) " (a,(0) 20+ B(0)°

Here also we find that soliton spreads as a function of time (figure 1), i.e. the soliton
represents a ring wave whose radius and thickness increases linearly with time (for
large t), while the amplitude decreases like ¢~ for fixed r.

It is interesting to note that under the transformations x = r*/4, ¢ = 2§/ r, we observe
that for the parametric choice po=1, ¥,= v, = =0, systems (13) and (20) are the
same.

or=qg-2
B =04
§ =03
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In dimensionless form the NLs equation in a weakly inhomogeneous medium can
be written as [16]

iql+qxx+2(lq|2_Px)q=0' (26)

The associated eigenvalue problems read

(-
Vo/x \—g*e? iA) Vv, (27a)
[Vl] _[ lal" 211" dipar li(g. ~2iptg) +2Aq] eA][VI

Vv, [i(gf+2iptg*) —2Aq*) —24q*]e™*  —i|gf +2iA>+4ipAt Vz] (276)

where A = 2ipxt +3ip°t®. Following the same method discussed earlier and introducing
a function I'=V,/V,, and choosing I'"=1/T*, the relation between n and (n—-1)
soliton solutions is found to be

, —48, e

g+g= a+rp (28)

Then, the BTs associated with (26) can be written as
&+ q.=1(g—qM4B1-|q'+ql’1"* ~2ia\(g+ ')} e * —2ipt(q'+q) *. (29)

Similarly, by taking the time derivative of (28) and substituting (27b) one can easily
obtain the time BT. From (28), the one-soliton solution for (26) is obtained in the form

g(1) = -2B, sech{2B,x + B14, +8a: B, +2pB, 1°1}
x exp{—2i[a,x +2(a}~ Bi)t+2pa, >+ pxt+2p° 1+ a,A,1} (30)

which is in agreement with the solution given by Chen and Lin [16].

Thus, we conclude that the Darboux-Bargmann method can also be successfully
used to study the inhomogeneous equations and we established this by working out
the BTs, soliton solutions and wavefunctions for the generalized Hirota and c:rcularly
symmetric NLS equations.
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